Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Sensors (Basel) ; 23(11)2023 May 30.
Article in English | MEDLINE | ID: covidwho-20245026

ABSTRACT

The Internet of Things (IoT) plays a fundamental role in monitoring applications; however, existing approaches relying on cloud and edge-based IoT data analysis encounter issues such as network delays and high costs, which can adversely impact time-sensitive applications. To address these challenges, this paper proposes an IoT framework called Sazgar IoT. Unlike existing solutions, Sazgar IoT leverages only IoT devices and IoT data analysis approximation techniques to meet the time-bounds of time-sensitive IoT applications. In this framework, the computing resources onboard the IoT devices are utilised to process the data analysis tasks of each time-sensitive IoT application. This eliminates the network delays associated with transferring large volumes of high-velocity IoT data to cloud or edge computers. To ensure that each task meets its application-specific time-bound and accuracy requirements, we employ approximation techniques for the data analysis tasks of time-sensitive IoT applications. These techniques take into account the available computing resources and optimise the processing accordingly. To evaluate the effectiveness of Sazgar IoT, experimental validation has been conducted. The results demonstrate that the framework successfully meets the time-bound and accuracy requirements of the COVID-19 citizen compliance monitoring application by effectively utilising the available IoT devices. The experimental validation further confirms that Sazgar IoT is an efficient and scalable solution for IoT data processing, addressing existing network delay issues for time-sensitive applications and significantly reducing the cost related to cloud and edge computing devices procurement, deployment, and maintenance.


Subject(s)
COVID-19 , Internet of Things , Humans , COVID-19/diagnosis , Data Analysis , Research Design
2.
Sensors (Basel) ; 23(11)2023 May 28.
Article in English | MEDLINE | ID: covidwho-20237217

ABSTRACT

The fish industry experiences substantial illegal, unreported, and unregulated (IUU) activities within traditional supply chain systems. Blockchain technology and the Internet of Things (IoT) are expected to transform the fish supply chain (SC) by incorporating distributed ledger technology (DLT) to build trustworthy, transparent, decentralized traceability systems that promote secure data sharing and employ IUU prevention and detection methods. We have reviewed current research efforts directed toward incorporating Blockchain in fish SC systems. We have discussed traceability in both traditional and smart SC systems that make use of Blockchain and IoT technologies. We demonstrated the key design considerations in terms of traceability in addition to a quality model to consider when designing smart Blockchain-based SC systems. In addition, we proposed an Intelligent Blockchain IoT-enabled fish SC framework that uses DLT for the trackability and traceability of fish products throughout harvesting, processing, packaging, shipping, and distribution to final delivery. More precisely, the proposed framework should be able to provide valuable and timely information that can be used to track and trace the fish product and verify its authenticity throughout the chain. Unlike other work, we have investigated the benefits of integrating machine learning (ML) into Blockchain IoT-enabled SC systems, focusing the discussion on the role of ML in fish quality, freshness assessment and fraud detection.


Subject(s)
Blockchain , Internet of Things , Animals , Fish Products , Fishes , Industry
3.
Sensors (Basel) ; 23(10)2023 May 09.
Article in English | MEDLINE | ID: covidwho-20232161

ABSTRACT

With technological advancements, smart health monitoring systems are gaining growing importance and popularity. Today, business trends are changing from physical infrastructure to online services. With the restrictions imposed during COVID-19, medical services have been changed. The concepts of smart homes, smart appliances, and smart medical systems have gained popularity. The Internet of Things (IoT) has revolutionized communication and data collection by incorporating smart sensors for data collection from diverse sources. In addition, it utilizes artificial intelligence (AI) approaches to control a large volume of data for better use, storing, managing, and making decisions. In this research, a health monitoring system based on AI and IoT is designed to deal with the data of heart patients. The system monitors the heart patient's activities, which helps to inform patients about their health status. Moreover, the system can perform disease classification using machine learning models. Experimental results reveal that the proposed system can perform real-time monitoring of patients and classify diseases with higher accuracy.


Subject(s)
COVID-19 , Heart Failure , Internet of Things , Humans , Artificial Intelligence , Internet , Heart Failure/diagnosis
4.
Sensors (Basel) ; 23(9)2023 Apr 25.
Article in English | MEDLINE | ID: covidwho-2312385

ABSTRACT

Numerous sensitive applications, such as healthcare and medical services, need reliable transmission as a prerequisite for the success of the new age of communications technology. Unfortunately, these systems are highly vulnerable to attacks like Sybil, where many false nodes are created and spread with deceitful intentions. Therefore, these false nodes must be instantly identified and isolated from the network due to security concerns and the sensitivity of data utilized in healthcare applications. Especially for life-threatening diseases like COVID-19, it is crucial to have devices connected to the Internet of Medical Things (IoMT) that can be believed to respond with high reliability and accuracy. Thus, trust-based security offers a safe environment for IoMT applications. This study proposes a blockchain-based fuzzy trust management framework (BFT-IoMT) to detect and isolate Sybil nodes in IoMT networks. The results demonstrate that the proposed BFT-IoMT framework is 25.43% and 12.64%, 12.54% and 6.65%, 37.85% and 19.08%, 17.40% and 8.72%, and 13.04% and 5.05% more efficient and effective in terms of energy consumption, attack detection, trust computation reliability, packet delivery ratio, and throughput, respectively, as compared to the other state-of-the-art frameworks available in the literature.


Subject(s)
Blockchain , COVID-19 , Internet of Things , Humans , Fuzzy Logic , Reproducibility of Results , Trust
5.
Biosens Bioelectron ; 223: 115009, 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2300660

ABSTRACT

The development of novel biomedical sensors as highly promising devices/tools in early diagnosis and therapy monitoring of many diseases and disorders has recently witnessed unprecedented growth; more and faster than ever. Nonetheless, on the eve of Industry 5.0 and by learning from defects of current sensors in smart diagnostics of pandemics, there is still a long way to go to achieve the ideal biomedical sensors capable of meeting the growing needs and expectations for smart biomedical/diagnostic sensing through eHealth systems. Herein, an overview is provided to highlight the importance and necessity of an inevitable transition in the era of digital health/Healthcare 4.0 towards smart biomedical/diagnostic sensing and how to approach it via new digital technologies including Internet of Things (IoT), artificial intelligence, IoT gateways (smartphones, readers), etc. This review will bring together the different types of smartphone/reader-based biomedical sensors, which have been employing for a wide variety of optical/electrical/electrochemical biosensing applications and paving the way for future eHealth diagnostic devices by moving towards smart biomedical sensing. Here, alongside highlighting the characteristics/criteria that should be met by the developed sensors towards smart biomedical sensing, the challenging issues ahead are delineated along with a comprehensive outlook on this extremely necessary field.


Subject(s)
Biosensing Techniques , Internet of Things , Artificial Intelligence , Electricity , Pandemics
6.
Int J Environ Res Public Health ; 20(5)2023 02 22.
Article in English | MEDLINE | ID: covidwho-2287936

ABSTRACT

Due to the global COVID-19 pandemic, public health control and screening measures have been introduced at healthcare facilities, including those housing our most vulnerable populations. These warning measures situated at hospital entrances are presently labour-intensive, requiring additional staff to conduct manual temperature checks and risk-assessment questionnaires of every individual entering the premises. To make this process more efficient, we present eGate, a digital COVID-19 health-screening smart Internet of Things system deployed at multiple entry points around a children's hospital. This paper reports on design insights based on the experiences of concierge screening staff stationed alongside the eGate system. Our work contributes towards social-technical deliberations on how to improve design and deploy of digital health-screening systems in hospitals. It specifically outlines a series of design recommendations for future health screening interventions, key considerations relevant to digital screening control systems and their implementation, and the plausible effects on the staff who work alongside them.


Subject(s)
COVID-19 , Internet of Things , Child , Humans , Pandemics/prevention & control , Internet , Hospitals, Pediatric
7.
Sensors (Basel) ; 23(1)2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2241694

ABSTRACT

Despite the fact that COVID-19 is no longer a global pandemic due to development and integration of different technologies for the diagnosis and treatment of the disease, technological advancement in the field of molecular biology, electronics, computer science, artificial intelligence, Internet of Things, nanotechnology, etc. has led to the development of molecular approaches and computer aided diagnosis for the detection of COVID-19. This study provides a holistic approach on COVID-19 detection based on (1) molecular diagnosis which includes RT-PCR, antigen-antibody, and CRISPR-based biosensors and (2) computer aided detection based on AI-driven models which include deep learning and transfer learning approach. The review also provide comparison between these two emerging technologies and open research issues for the development of smart-IoMT-enabled platforms for the detection of COVID-19.


Subject(s)
COVID-19 , Internet of Things , Humans , Artificial Intelligence , COVID-19/diagnosis , Technology , Internet
8.
Biosens Bioelectron ; 220: 114847, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2239673

ABSTRACT

Existing public health emergencies due to fatal/infectious diseases such as coronavirus disease (COVID-19) and monkeypox have raised the paradigm of 5th generation portable intelligent and multifunctional biosensors embedded on a single chip. The state-of-the-art 5th generation biosensors are concerned with integrating advanced functional materials with controllable physicochemical attributes and optimal machine processability. In this direction, 2D metal carbides and nitrides (MXenes), owing to their enhanced effective surface area, tunable physicochemical properties, and rich surface functionalities, have shown promising performances in biosensing flatlands. Moreover, their hybridization with diversified nanomaterials caters to their associated challenges for the commercialization of stability due to restacking and oxidation. MXenes and its hybrid biosensors have demonstrated intelligent and lab-on-chip prospects for determining diverse biomarkers/pathogens related to fatal and infectious diseases. Recently, on-site detection has been clubbed with solution-on-chip MXenes by interfacing biosensors with modern-age technologies, including 5G communication, internet-of-medical-things (IoMT), artificial intelligence (AI), and data clouding to progress toward hospital-on-chip (HOC) modules. This review comprehensively summarizes the state-of-the-art MXene fabrication, advancements in physicochemical properties to architect biosensors, and the progress of MXene-based lab-on-chip biosensors toward HOC solutions. Besides, it discusses sustainable aspects, practical challenges and alternative solutions associated with these modules to develop personalized and remote healthcare solutions for every individual in the world.


Subject(s)
Biosensing Techniques , COVID-19 , Internet of Things , Humans , Artificial Intelligence , COVID-19/diagnosis , Hospitals
9.
Int J Environ Res Public Health ; 19(19)2022 Sep 26.
Article in English | MEDLINE | ID: covidwho-2240872

ABSTRACT

There is a need to ensure comfortable conditions for hospital staff and patients from the point of view of thermal comfort and air quality so that they do not affect their performance. We consider the need for hospital employees and patients to enjoy conditions of greater well-being during their stay. This is understood as a comfortable thermal sensation and adequate air quality, depending on the task they are performing. The contribution of this article is the formulation of the fundamentals of a system and platform for monitoring thermal comfort and Indoor Air Quality (IAQ) in hospitals, based on an Internet of Things platform composed of a low-cost sensor node network that is capable of measuring critical variables such as humidity, temperature, and Carbon Dioxide (CO2). As part of the platform, a multidimensional data model with an On-Line Analytical Processing (OLAP) approach is presented that offers query flexibility, data volume reduction, as well as a significant reduction in query response times. The experimental results confirm the suitability of the platform's data model, which facilitates operational and strategic decision making in complex hospitals.


Subject(s)
Air Pollution, Indoor , Internet of Things , Air Pollution, Indoor/analysis , Carbon Dioxide/analysis , Environmental Monitoring/methods , Hospitals , Humans , Renewable Energy , Temperature
10.
Comput Biol Med ; 154: 106583, 2023 03.
Article in English | MEDLINE | ID: covidwho-2210093

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, there is a global demand for intelligent health surveillance and diagnosis systems for patients with critical conditions, particularly those with severe heart diseases. Sophisticated measurement tools are used in hospitals worldwide to identify serious heart conditions. However, these tools need the face-to-face involvement of healthcare experts to identify cardiac problems. OBJECTIVE: To design and implement an intelligent health monitoring and diagnosis system for critical cardiac arrhythmia COVID-19 patients. METHODOLOGY: We use artificial intelligence tools divided into two parts: (i) IoT-based health monitoring; and (ii) fuzzy logic-based medical diagnosis. The intelligent diagnosis of heart conditions and IoT-based health surveillance by doctors is offered to critical COVID-19 patients or isolated in remote locations. Sensors, cloud storage, as well as a global system for mobile texts and emails for communication with doctors in case of emergency are employed in our proposal. RESULTS: Our implemented system favors remote areas and isolated critical patients. This system utilizes an intelligent algorithm that employs an ECG signal pre-processed by moving through six digital filters. Then, based on the processed results, features are computed and assessed. The intelligent fuzzy system can make an autonomous diagnosis and has enough information to avoid human intervention. The algorithm is trained using ECG data from the MIT-BIH database and achieves high accuracy. In real-time validation, the fuzzy algorithm obtained almost 100% accuracy for all experiments. CONCLUSION: Our intelligent system can be helpful in many situations, but it is particularly beneficial for isolated COVID-19 patients who have critical heart arrhythmia and must receive intensive care.


Subject(s)
COVID-19 , Internet of Things , Humans , Fuzzy Logic , Artificial Intelligence , COVID-19/diagnosis , Pandemics , Arrhythmias, Cardiac/diagnosis , Internet , COVID-19 Testing
11.
Comput Intell Neurosci ; 2022: 7190751, 2022.
Article in English | MEDLINE | ID: covidwho-2121885

ABSTRACT

The COVID-19 pandemic has threatened the lives of many people, especially the elderly and those with chronic illnesses, as well as threatening the global economy. In response to the pandemic, many medical centers, including dental facilities, have significantly reduced the treatment of patients by limiting clinical practice to exclusively urgent, nondeferred care. Dentists are more vulnerable to contracting COVID-19, due to the necessity of the dentist being close to the patient. One of the precautions that dentists take to avoid transmitting infections is to wear a mask and gloves. However, the basic condition for nontransmission of infection is to leave a safe distance between the patient and the dentist. This system can be implemented by using an Arduino microcontroller, which is designed as a preliminary device by a dentist to examine a patient's teeth so that a safe distance of three meters between the dentist and the patient can be maintained. The project is based on hardware and has been programmed through Arduino. The proposed system uses a small wired camera with a length of five meters that is connected to the dentist's mobile or laptop and is installed on a robotic arm. The dentist can control the movement of the arm in all directions using a joystick at a distance of three meters. The results showed the effectiveness of this system for leaving a safe distance between the patient and the dentist. In our future work, we will control the movement of the arm via Bluetooth, and we will use a wi-fi-based camera.


Subject(s)
COVID-19 , Internet of Things , Aged , Dentist-Patient Relations , Humans , Pandemics
12.
Sensors (Basel) ; 22(20)2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2071711

ABSTRACT

Healthcare digitalization requires effective applications of human sensors, when various parameters of the human body are instantly monitored in everyday life due to the Internet of Things (IoT). In particular, machine learning (ML) sensors for the prompt diagnosis of COVID-19 are an important option for IoT application in healthcare and ambient assisted living (AAL). Determining a COVID-19 infected status with various diagnostic tests and imaging results is costly and time-consuming. This study provides a fast, reliable and cost-effective alternative tool for the diagnosis of COVID-19 based on the routine blood values (RBVs) measured at admission. The dataset of the study consists of a total of 5296 patients with the same number of negative and positive COVID-19 test results and 51 routine blood values. In this study, 13 popular classifier machine learning models and the LogNNet neural network model were exanimated. The most successful classifier model in terms of time and accuracy in the detection of the disease was the histogram-based gradient boosting (HGB) (accuracy: 100%, time: 6.39 sec). The HGB classifier identified the 11 most important features (LDL, cholesterol, HDL-C, MCHC, triglyceride, amylase, UA, LDH, CK-MB, ALP and MCH) to detect the disease with 100% accuracy. In addition, the importance of single, double and triple combinations of these features in the diagnosis of the disease was discussed. We propose to use these 11 features and their binary combinations as important biomarkers for ML sensors in the diagnosis of the disease, supporting edge computing on Arduino and cloud IoT service.


Subject(s)
COVID-19 , Internet of Things , Humans , COVID-19/diagnosis , Cholesterol, HDL , Machine Learning , Amylases , Triglycerides
13.
Sensors (Basel) ; 22(18)2022 Sep 15.
Article in English | MEDLINE | ID: covidwho-2043921

ABSTRACT

The SARS-CoV-2 virus has posed formidable challenges that must be tackled through scientific and technological investigations on each environmental scale. This research aims to learn and report about the current state of user activities, in real-time, in a specially designed private indoor environment with sensors in infection transmission control of SARS-CoV-2. Thus, a real-time learning system that evolves and updates with each incoming piece of data from the environment is developed to predict user activities categorized for remote monitoring. Accordingly, various experiments are conducted in the private indoor space. Multiple sensors, with their inputs, are analyzed through the experiments. The experiment environment, installed with microgrids and Internet of Things (IoT) devices, has provided correlating data of various sensors from that special care context during the pandemic. The data is applied to classify user activities and develop a real-time learning and monitoring system to predict the IoT data. The microgrids were operated with the real-time learning system developed by comprehensive experiments on classification learning, regression learning, Error-Correcting Output Codes (ECOC), and deep learning models. With the help of machine learning experiments, data optimization, and the multilayered-tandem organization of the developed neural networks, the efficiency of this real-time monitoring system increases in learning the activity of users and predicting their actions, which are reported as feedback on the monitoring interfaces. The developed learning system predicts the real-time IoT data, accurately, in less than 5 milliseconds and generates big data that can be deployed for different usages in larger-scale facilities, networks, and e-health services.


Subject(s)
COVID-19 , Internet of Things , Humans , Monitoring, Physiologic , Pandemics/prevention & control , SARS-CoV-2
14.
Sensors (Basel) ; 22(14)2022 Jul 12.
Article in English | MEDLINE | ID: covidwho-1979349

ABSTRACT

Visually impaired people face many challenges that limit their ability to perform daily tasks and interact with the surrounding world. Navigating around places is one of the biggest challenges that face visually impaired people, especially those with complete loss of vision. As the Internet of Things (IoT) concept starts to play a major role in smart cities applications, visually impaired people can be one of the benefitted clients. In this paper, we propose a smart IoT-based mobile sensors unit that can be attached to an off-the-shelf cane, hereafter a smart cane, to facilitate independent movement for visually impaired people. The proposed mobile sensors unit consists of a six-axis accelerometer/gyro, ultrasonic sensors, GPS sensor, cameras, a digital motion processor and a single credit-card-sized single-board microcomputer. The unit is used to collect information about the cane user and the surrounding obstacles while on the move. An embedded machine learning algorithm is developed and stored in the microcomputer memory to identify the detected obstacles and alarm the user about their nature. In addition, in case of emergencies such as a cane fall, the unit alerts the cane user and their guardian. Moreover, a mobile application is developed to be used by the guardian to track the cane user via Google Maps using a mobile handset to ensure safety. To validate the system, a prototype was developed and tested.


Subject(s)
Internet of Things , Sensory Aids , Visually Impaired Persons , Canes , Humans , Machine Learning
15.
Biomed Res Int ; 2022: 3113119, 2022.
Article in English | MEDLINE | ID: covidwho-1973955

ABSTRACT

Objective: Internet of Things (IoT) integrates several technologies where devices learn from the experience of each other thereby reducing human-intervened likely errors. Modern technologies like IoT and machine learning enable the conventional to patient-specific approach transition in healthcare. In conventional approach, the biggest challenge faced by healthcare professionals is to predict a disease by observing the symptoms, monitoring the remote area patient, and also attending to the patient all the time after being hospitalised. IoT provides real-time data, makes decision-making smarter, and provides far superior analytics, and all these to help improve the quality of healthcare. The main objective of the work was to create an IoT-based automated system using machine learning models for symptom-based COVID-19 prognosis. Methods: Comparative analysis of predictive microbiology of COVID-19 from case symptoms using various machine learning classifiers like logistics regression, k-nearest neighbor, support vector machine, random forest, decision trees, Naïve Bayes, and gradient booster is reported here. For the sake of the validation and verification of the models, performance of each model based on the retrieved cloud-stored data was measured for accuracy. Results: From the accuracy plot, it was concluded that k-NN was more accurate (97.97%) followed by decision tree (97.79), support vector machine (97.42), logistics regression (96.50), random forest (90.66), gradient boosting classifier (87.77), and Naïve Bayes (73.50) in COVID-19 prognosis. Conclusion: The paper presents a health monitoring IoT framework having high clinical significance in real-time and remote healthcare monitoring. The findings reported here and the lessons learnt shall enable the healthcare system worldwide to counter not only this ongoing COVID but many other such global pandemics the humanity may suffer from time to come.


Subject(s)
COVID-19 , Internet of Things , Transition to Adult Care , Bayes Theorem , COVID-19/diagnosis , Computational Biology , Humans , Machine Learning , Prognosis
16.
Sensors (Basel) ; 22(15)2022 Jul 31.
Article in English | MEDLINE | ID: covidwho-1969431

ABSTRACT

The Internet of Things (IoT) is an innovative technology with billions of sensors in various IoT applications. Important elements used in the IoT are sensors that collect data for desired analyses. The IoT and sensors are very important in smart cities, smart agriculture, smart education, healthcare systems, and other applications. The healthcare system uses the IoT to meet global health challenges, and the newest example is COVID-19. Demand has increased during COVID-19 for healthcare to reach patients remotely and digitally at their homes. The IoT properly monitors patients using an interconnected network to overcome the issues of healthcare services. The aim of this paper is to discuss different applications, technologies, and challenges related to the healthcare system. Different databases were searched using keywords in Google Scholar, Elsevier, PubMed, ACM, ResearchGate, Scopus, Springer, etc. This paper discusses, highlights, and identifies the applications of IoT healthcare systems to provide research directions to healthcare, academia, and researchers to overcome healthcare system challenges. Hence, the IoT can be beneficial by providing better treatments using the healthcare system efficiently. In this paper, the integration of the IoT with smart technologies not only improves computation, but will also allow the IoT to be pervasive, profitable, and available anytime and anywhere. Finally, some future directions and challenges are discussed, along with useful suggestions that can assist the IoT healthcare system during COVID-19 and in a severe pandemic.


Subject(s)
COVID-19 , Internet of Things , COVID-19/diagnosis , COVID-19/epidemiology , Delivery of Health Care , Humans , Internet , Monitoring, Physiologic , Pandemics
17.
Int J Environ Res Public Health ; 19(15)2022 08 03.
Article in English | MEDLINE | ID: covidwho-1969277

ABSTRACT

An online survey was circulated to employees from a wide range of organisations to gauge attitudes towards the idea of using smart hand sanitisers in the workplace. The sanitisers are capable of real-time monitoring and providing feedback that varies according to the hand hygiene behaviour of users. In certain circumstances, the sanitisers can monitor individuals, making it possible to identify workers whose hand hygiene falls below a certain standard. The survey was circulated between July and August 2021 during the COVID-19 pandemic. Data gathered from 314 respondents indicated support for some features of the technology, but also indicated concern about invasions of privacy and the possibility of coercion. Attitudes towards the possible implementation of the technology varied significantly according to certain characteristics of the sample, but particularly with age. Respondents above the median age were more likely to support the use of data in ways that could facilitate the promotion and enforcement of hand hygiene practices.


Subject(s)
COVID-19 , Hand Hygiene , Internet of Things , Attitude , COVID-19/epidemiology , Humans , Pandemics , Surveys and Questionnaires , Technology
18.
Comput Intell Neurosci ; 2022: 5012962, 2022.
Article in English | MEDLINE | ID: covidwho-1950403

ABSTRACT

COVID-19 has depleted healthcare systems around the world. Extreme conditions must be defined as soon as possible so that services and treatment can be deployed and intensified. Many biomarkers are being investigated in order to track the patient's condition. Unfortunately, this may interfere with the symptoms of other diseases, making it more difficult for a specialist to diagnose or predict the severity level of the case. This research develops a Smart Healthcare System for Severity Prediction and Critical Tasks Management (SHSSP-CTM) for COVID-19 patients. On the one hand, a machine learning (ML) model is projected to predict the severity of COVID-19 disease. On the other hand, a multi-agent system is proposed to prioritize patients according to the seriousness of the COVID-19 condition and then provide complete network management from the edge to the cloud. Clinical data, including Internet of Medical Things (IoMT) sensors and Electronic Health Record (EHR) data of 78 patients from one hospital in the Wasit Governorate, Iraq, were used in this study. Different data sources are fused to generate new feature pattern. Also, data mining techniques such as normalization and feature selection are applied. Two models, specifically logistic regression (LR) and random forest (RF), are used as baseline severity predictive models. A multi-agent algorithm (MAA), consisting of a personal agent (PA) and fog node agent (FNA), is used to control the prioritization process of COVID-19 patients. The highest prediction result is achieved based on data fusion and selected features, where all examined classifiers observe a significant increase in accuracy. Furthermore, compared with state-of-the-art methods, the RF model showed a high and balanced prediction performance with 86% accuracy, 85.7% F-score, 87.2% precision, and 86% recall. In addition, as compared to the cloud, the MAA showed very significant performance where the resource usage was 66% in the proposed model and 34% in the traditional cloud, the delay was 19% in the proposed model and 81% in the cloud, and the consumed energy was 31% in proposed model and 69% in the cloud. The findings of this study will allow for the early detection of three severity cases, lowering mortality rates.


Subject(s)
COVID-19 , Internet of Things , Algorithms , Delivery of Health Care , Humans
19.
Front Public Health ; 10: 869238, 2022.
Article in English | MEDLINE | ID: covidwho-1933896

ABSTRACT

Early diagnosis, prioritization, screening, clustering, and tracking of patients with COVID-19, and production of drugs and vaccines are some of the applications that have made it necessary to use a new style of technology to involve, manage, and deal with this epidemic. Strategies backed by artificial intelligence (A.I.) and the Internet of Things (IoT) have been undeniably effective to understand how the virus works and prevent it from spreading. Accordingly, the main aim of this survey is to critically review the ML, IoT, and the integration of IoT and ML-based techniques in the applications related to COVID-19, from the diagnosis of the disease to the prediction of its outbreak. According to the main findings, IoT provided a prompt and efficient approach to tracking the disease spread. On the other hand, most of the studies developed by ML-based techniques aimed at the detection and handling of challenges associated with the COVID-19 pandemic. Among different approaches, Convolutional Neural Network (CNN), Support Vector Machine, Genetic CNN, and pre-trained CNN, followed by ResNet have demonstrated the best performances compared to other methods.


Subject(s)
COVID-19 , Internet of Things , Machine Learning , Artificial Intelligence , COVID-19/epidemiology , Humans , Neural Networks, Computer , Pandemics/prevention & control , Support Vector Machine
20.
Stud Health Technol Inform ; 295: 201-204, 2022 Jun 29.
Article in English | MEDLINE | ID: covidwho-1924027

ABSTRACT

The recent advancements in artificial intelligence (AI) and the Internet of Medical Things (IoMT) have opened new horizons for healthcare technology. AI models, however, rely on large data that must be shared with the centralized entity developing the model. Data sharing leads to privacy preservation and legal issues. Federated Learning (FL) enables the training of AI models on distributed data. Hence, a large amount of IoMT data can be put into use without the need for sharing the data. This paper presents the opportunities offered by FL for privacy preservation in IoMT data. With FL, the complicated dynamics and agreements for data-sharing can be avoided. Furthermore, it describes the use cases of FL in facilitating collaborative efforts to develop AI for COVID-19 diagnosis. Since handling data from multiple sites poses its challenges, the paper also highlights the critical challenges associated with FL developments for IoMT data. Addressing these challenges will lead to gaining maximum benefit from data-driven AI technologies in IoMT.


Subject(s)
COVID-19 , Internet of Things , Artificial Intelligence , COVID-19 Testing , Humans , Privacy
SELECTION OF CITATIONS
SEARCH DETAIL